Two congruences involving Andrews-Paule’s broken 3-diamond partitions and 5-diamond partitions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An extensive analysis of the parity of broken 3-diamond partitions.

In 2007, Andrews and Paule introduced the family of functions [Formula: see text] which enumerate the number of broken k-diamond partitions for a fixed positive integer k. Since then, numerous mathematicians have considered partitions congruences satisfied by [Formula: see text] for small values of k. In this work, we provide an extensive analysis of the parity of the function [Formula: see tex...

متن کامل

PARITY RESULTS FOR BROKEN k–DIAMOND PARTITIONS AND (2k + 1)–CORES

In this paper we prove several new parity results for broken k-diamond partitions introduced in 2007 by Andrews and Paule. In the process, we also prove numerous congruence properties for (2k+1)-core partitions. The proof technique involves a general lemma on congruences which is based on modular forms.

متن کامل

CONGRUENCES MODULO SQUARES OF PRIMES FOR FU’S k DOTS BRACELET PARTITIONS

Abstract. In 2007, Andrews and Paule introduced the family of functions ∆k(n) which enumerate the number of broken k–diamond partitions for a fixed positive integer k. In that paper, Andrews and Paule proved that, for all n ≥ 0, ∆1(2n + 1) ≡ 0 (mod 3) using a standard generating function argument. Soon after, Shishuo Fu provided a combinatorial proof of this same congruence. Fu also utilized th...

متن کامل

Conjecture of Andrews on Partitions

Definition 1.2. For an even integer λ, let Aλ,k,a(n) denote the number of partitions of n into parts such that no part which is not equivalent to 0(mod λ+ 1) may be repeated and no part is equivalent to 0,±(a−λ/2)(λ+1)mod[(2k−λ+1)(λ+1)]. For an odd integer λ, let Aλ,k,a(n) denote the number of partitions of n into parts such that no part which is not equivalent to 0(mod((λ+1)/2)) may be repeate...

متن کامل

Congruences in ordered pairs of partitions

1. Introducing the birank. A partition is defined as being a nonincreasing sequence of positive integers, λ = (λ1,λ2, . . . ,λr ). The set of all partitions, which includes the empty partition ∅, is denoted by . The sum of the parts of a given partition is called the weight of the partition, wt(λ) = λ1+λ2+···+λr . It is standard notation to write (z;q)∞ := ∏ t≥0(1−zq) and p−k(n) for the coeffic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 2011

ISSN: 0386-2194

DOI: 10.3792/pjaa.87.65